An Iteratively Reweighted Algorithm for Sparse Reconstruction of Subsurface Flow Properties from Nonlinear Dynamic Data
نویسندگان
چکیده
A challenging problem in predicting fluid flow displacement patterns in subsurface environment is the identification of spatially variable flow-related rock properties such as permeability and porosity. Characterization of subsurface properties usually involves solving a highly underdetermined nonlinear inverse problem where a limited number of measurements are used to reconstruct a large number of unknown parameters. To alleviate the non-uniqueness of the solution, prior information is integrated into the solution. Regularization of ill-posed inverse problems is commonly performed by imparting structural prior assumptions, such as smoothness, on the solution. Since many geologic formations exhibit natural continuity/correlation at various scales, decorrelating their spatial description can lead to a more compact or sparse representation in an appropriate compression transform domain such as wavelets or Fourier domain. The sparsity of flow-related subsurface properties in such incoherent bases has inspired the development of regularization techniques that attempt to solve a better-posed inverse problem in these domains. In this paper, we present a practical algorithm based on sparsity regularization to effectively solve nonlinear dynamic inverse problems that are encountered in subsurface model calibration. We use an iteratively reweighted algorithm that is widely used to solve linear inverse problems with sparsity constraint (known as compressed sensing) to estimate permeability fields from nonlinear dynamic flow data. To this end, we minimize a data misfit cost function that is augmented with an additive regularization term promoting sparse solutions in a Fourier-related discrete cosine transform domain. This regularization approach introduces a new weighting parameter that is in general unknown a priori, but controls the effectiveness of the resulting solutions. Determination of the regularization parameter can only be achieved through considerable numerical experimentation and/or a priori knowledge of the reconstruction solution. To circumvent this problem, we include the sparsity promoting constraint as a multiplicative regularization term which eliminates the need for a regularization parameter. We evaluate the performance of the iteratively reweighted approach with multiplicative sparsity regularization using a set of waterflooding experiments in an oil reservoir where we use nonlinear dynamic flow data to infer the spatial distribution of rock permeabilities, While, the examples of this paper are derived from the subsurface flow and transport application, the proposed methodology also can be used in solving nonlinear inverse problems with sparsity constraints in other imaging applications such as geophysical, medical imaging, electromagnetic and acoustic inverse problems.
منابع مشابه
A Sparse Bayesian Estimation Framework for Conditioning Prior Geologic Models to Nonlinear Flow Measurements
We present a Bayesian framework for reconstruction of subsurface hydraulic properties from nonlinear dynamic flow data by imposing sparsity on the distribution of the solution coefficients in a compression transform domain. Sparse representation of the subsurface flow properties in a compression transform basis lends itself to a natural regularization approach, i.e. sparsity regularization, whi...
متن کاملOnline Reweighted Least Squares Algorithm for Sparse Recovery and Application to Short-Wave Infrared Imaging
We address the problem of sparse recovery in an online setting, where random linear measurements of a sparse signal are revealed sequentially and the objective is to recover the underlying signal. We propose a reweighted least squares (RLS) algorithm to solve the problem of online sparse reconstruction, wherein a system of linear equations is solved using conjugate gradient with the arrival of ...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملNon-Negative Matrix Factorisation of Compressively Sampled Non-Negative Signals
The new emerging theory of Compressive Sampling has demonstrated that by exploiting the structure of a signal, it is possible to sample a signal below the Nyquist rate and achieve perfect reconstruction. In this short note, we employ Non-negative Matrix Factorisation in the context of Compressive Sampling and propose two NMF algorithms for signal recovery—one of which utilises Iteratively Rewei...
متن کاملNonlinear residual minimization by iteratively reweighted least squares
In this paper we address the numerical solution of minimal norm residuals of nonlinear equations in finite dimensions. We take particularly inspiration from the problem of finding a sparse vector solution of phase retrieval problems by using greedy algorithms based on iterative residual minimizations in the `p-norm, for 1 ≤ p ≤ 2. Due to the mild smoothness of the problem, especially for p→ 1, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0911.2270 شماره
صفحات -
تاریخ انتشار 2009